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SUMlMARY 

A method of zone spreading correction in gel permeation chromatography is 
described that is applicable in the case of a Gaussian-type spreading function. Instead 
of the integral Tung equation, an equivalent partial differential equation is solved 
numerically and in this way the necessary calculations are considerably simplified. 
The method is applied to artificial and real chromatograms and the results are com- 
pared with those of some known correction procedures_ 

INTRODUCTION 

The imperfect resoking power of real chromatographic columns, due to zone 
spreading, distorts the results of gel permeation chromatographic (GPC) analyses of 
polymers. In order to obtain accurate data on molecular weight distributions and on 
molecular weight averages, it is therefore imperative to use special correction proce- 
dures that partly or completely eliminate the influence of the dispersion in the column. 

From the mathematical point of view, the zone spreading correction requires 
an integral (Tung) equation to be solved by a suitable numerical method. In the litera- 
ture one can find many different procedures 1 - g, but most of them require, with only 
minor exceptions l”*ll fast computers with large storage space. In this paper, a zone 
spreading correction’procedure is proposed that is very simple and fast, such that the 
necessary calculations can be carried out, if need be, even with a simple de&calculator. 

The procedure is based on the assumption that the spreading function in the 
Tung equation is Gaussian, a condition which is usually well fulfilIed with the highly 
efficient columns used in modern GPC instruments. 

THEORETICAL 

The relationship between the original, normalized chromatogram, f(x), and 
the chromatogram corrected for zone spreading, W(X), is described by the Tung 
integral equation 

f(x) = __lm &w) ~~09 dJ7 (1) 



where x is the elution volume- Its kernel, K&y), is usually called the spreading func- 
tion and represents the elution curve of a monodisperse polymer with a molecular 
weight co&sponding to the elution volume y. In the following discussion we limit 
ourselves to the case of a Gaussian spreading function, which we shall write as 

K(x,y) = a) expf--h (x-y)“] (2) 

The spreading factor, 11, is inversely proportional to the extent of sample spreading in 
a given column. 

Firstly, we shall show that under these conditions the integral eqn. 1 represents 
a solution of a boundary value problem analogous to a certain problem of free diffu- 
sion. This equivalent boundary value problem can be stated as follows: Solve 

(3) 

subject to the boundary conditions 

fk 0) = w(x) (4) 

f-(--m, t) = 0 (6) 

[This problem can be given the following physical interpretation: if the concea- 
tration of a compound in a one-dimensional space (space coordinate X) has initialiy 
the shape W(X), find how the shape has changed by free diffusion proceeding for a 
time fd, if the diffusion coefficient, assumed to be constant, is D.] 

The solution of this boundary value problemlL is of the form 

which is the same as that of the Tung integral eqn. 1 with the kernel given by eqn. 2, 
provided that we put 

It follows that the caiculation of the corrected chromatogram can be reduced 
to the determination of the boundary condition w(x) iu the problem given by eqns. 
3-6, ivhere the functionf(x,t,) is known [it is identical with the actual, uncorrected 
chromatogramf(x)J and the quantity h can be obtained in advance by calibrating the 
column with a series pf narrow fractions, e-g., by the reverse-flow methods3. 

In order to obtain the final correction equations in the simplest form, we shall 
solve this problem by a simple method of finite dif5erences. Its essence rests on using 
the Taylor expansion to estimate the values of the sought function in points with 
abscissae that differ by a small increment from those where the values of-the func- 
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tion are known. For the derivatives in the-Taylor series we substitute their numerical 
analogues obtained by approximating the given function by an interpolation poly- 
nomial. 

This- pracedure can be repeated in an optional pre-selected number of steps 
(k), where th e f unction values calculated in step i serve as a basis for a computation 
of derivatives in step i f 1. Starting from the known values of f(lr,tJ (uncorrected 
chromatogam), we reach the sought function W(X) after k steps. The differential eqn, 3 
is instrumental in transforming the derivatives with respect to the coordinate x {only 
these are experimentally available) into derivatives with respect to C, to be substituted 
into the Tayior series. 

The above principle can be modified in many different ways in order to obtain 
a more precise solution (e-g_, see ref. 14), but all of these procedures require more 
sophisticated algorithms, In this work we employed only the Taylor series method and 
a higher precision was obtained by substituting higher-order derivatives. 

Taylor expansion of the Gunction f(x,r) in t can be written as 

f(x,r - At) =f(x,t) - At- af~K0 + K_ av-(x4 
a t 

2 a t2 
..43 _ a3f(-v) 4 

6 a t3 
- -. (9) 

assuming that ah partial derivatives exist. 
Using a notation more suitable for discrete quantities, Le., 

and similarly for higher derivatives, eqn. 9 can be rewritten as 

It is evident from eqn. 3 that Jfi,@t can be directly substituted; further, it holds that 

and also 

so that for the second derivative in t we obtain the relationship 

Similarly, it holds for the third derivative in f that 

(13) 

04) 
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etc. Substituting now into eqn. 11, we obtain the relationship 

in which we find only derivatives in x and different powers of the product DAt. If the 
calculation is performed in k steps, we can express At in terms of ta: 

At = tJk (17) 

and according to eqn. 8 we obtain for DAt 

DAt = 1/(4kh) (18) 

Substituting from eqn. 18 into eqn. 16, we obtain a final equation for calculation of 
the quantityfi,,_i, where all coefficients are numerically accessible. If we now cal- 
culate the partial derivatives in x using relationships obtained by approximating the 
function& by an interpolation polynomial and if we put r = (4kI~Ax~)-~, we obtain 
the following equations directly applicable to the calculation of quantitiesf,,,_,: 

if the Taylor.series is truncated after the term with the first derivative; 

fi.n-1 =_&I ( 1 + g + 3p) - (fr-l.n ff,,,.,) (;r + 24 t 

from the Taylor series with the second derivative; and finally 

.f I.=-1 =ff.n (1 -I- gr -!- G fi + tJ r3) - (Awl., +f,+l.m) (2 r + y r2 + z r3) -i- 

+ (h-t., -f-frt'..) b;r + r2 -I- r3) - (fI-3.n +L3.4 ($=jr + &r2 + kr3) CW 

for the expansion including the third derivative. In these equations the subscript i 
corresponds to the vaiues of the elution volume, i.e., to the abscissae of the cbromato- 
gram, the subscript n corresponds to the quantity t in such a way that t = ?d for n = k 
(where k is the chosen number of steps) and t = 0 for n = 0. 

Eqns. 19-21 were derived on the assumption that D in eqn. 3 is constant; this 
is equivalent (c$, eqn. 8) to the assumption that the spreading factor, h, is independent 
of the elution voiume. It would be possible to solve an equivaIent boundary value 
problem also for the case D = D(x), but the main advantage of the proposed proce- 
dure .vk, the simplicity of the final correction equations (eqns. 19-21), would be lost. 
In correcting the chromatograms where the spreading factor was a function of the 
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The value -0.1345 caIcu!ated from the experimental calibration (eqn. 22) was sub- 
stituted for the derivative in @is equation. The uncorrected chromatogramsf(v) were 
H&n calculated by numerical integration of eqn. I I in case A a constant spreading 
factor h - 0.2 was used, whereas in case B an elution-volume-dependent Ii according 
to eqn. 23 was employed. To adjust the precision of the input data to the precision ex- 
pected in real chromatograms, the heights of calculated normalized “uncorrected” 
chromatograms were multiplied by JO00 and rounded off to an even first decimal 
(which corresponds to a precision of &-to.2 mm for a chromatogram with a maximum 
height of ~about 14 cm). 

Preliminary caIcuIations showed that the correction based on the simplest 
equation (eqn. 19) is inadequate an.d cannot be used in practice_ On the other hand, 
eqns. 20 and 21 require the numezical calculation of higher derivatives and a low 
precision in reading the heights of ehromatograms (especially at their extreme ends, 
wherg: the relative error is the highest) can lead to artificial oscillations in the corrected 
curve. The occurrence of this undesirable effect is minimized if a judiciously selected 
integral multiple of the true volume count increment, d~,,~, = Zdv, with I = 1,2,3..., 
is used in eqns. 20 and 21 instead of dv itself. The modified equations are then 

_&,-I =f;., (1 -I- ;r + k2) - (L.. tf,*,,,> ($ -!- 2rZ) t 

and 

In view of the lower relative precision ip reading the heights at the extreme ends 
of chromatograms, equations of lower order were used in the actual calculations for 
abcissae i = 1 to i = 31 and i = N - 31 f 1 to i = N, where N is the total number 
of experimental points (e.g., in a computer program based on eqn. Zla, eqns. 19 and 
20 were used at the extreme ends). 

The artifkial chromatogram A was used to study the infiuence of the number 
of calculating steps (k) and the influence of the quantity ~~~~~~ on the correction 
efficiency of eqn. 21a. Fig. 1 clearly shows that the correction efliciency increases 
with the number of iterations (k), although the small improvement in resolution 
brought about by increasing the number of steps from k = 5 to k = 15 hardly 
justifies tripling the computation time. 

Even for k = 1 (Le., with a direct, non-iterative application of eqn. 2la) one 
attains a distinct although by no means perfect resolution of both superimposed 

peaks- 
Fig. 2 shows a significant influence of the diminishing d Y,,~= on the correction 

eificiency of eqn. 21a for a constant number of iterations k = 3. (However, a further 
decrease to dv calc = _4v = 0.5 leads to considerable oscillations of the computed 
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Fig. 1. Xufluence of the number of iteration steps (k) on the correction efficiency of eqn. 21a applied 
to artificial chromatogram A. Calculated with A”,,,, = 1.5. Broken tine, uncorrected chromatogram 
f(u); solid line, known course of the corrected chromatomm N$v); 0, k = 1; a, k = 5; 0, P = 15. 

function w.) It is also evident that even with a moderate number of iterations (k = 3), 
a very good correction efficiency can be achieved. This fact emerges even more clearly 
from Fig. 3, where the results obtained by applying eqni. 20a and 21a in three itera- 
tion steps are compared with a very efficient correction procedure, viz., Method 2 of 
Ishige et aL8. (We have had very useful experience with this algorithm’ for some years 
and accordiugty we use it as a standard for comparison purposes.) Fig. 3 also shows a 
chromatogram corrected according to the method of Pierce and Armonas?’ this 
method is comparable with the procedure proposed here in terms of simplicity and ra- 
pidity of calculation. 

Fig. 2. IniIuence of the value of dv,.,, on the correction efficiency by eqn. Xa applied to the artificial 
cluomatogram A. Calculated with k = 3. Curve, original course of t*(w); 0, d vcarc = 1; 0, dvenIc = 
1.5; 9, &,,I, = 2. 

* The program written in Fortran IV was made available by courtesy of Prof. Harnielcc. 
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Fig. 3. Comparison of the correction efficiency of different methods applied to the artificial chroma- 
togram A. 0, Tixis work, eqn. Zla, k = 3, &,I, = 1; 0, this work, f!qn. 2Ch, k = 3, AL,, = 1; 
I, Ishige er aZ.8 (Method 2); 0, Pierce and Annonasxo; curve, origina course of w(v). 

It follows from the comparison of the curves in Fig. 3 that the efficiency of the 
simple correction based on the sevenpoint eqn. 2fa is comparable with, if not better 
than, the sophisticated algorithm used by Ishige et al. The correction eqn. 20a also 
affords good results, whereas the Pierce and Armonas method gives only a slight in- 

Fig. 4. Corresponding comparison to that in F& 3 for the artiCcial chromatogram B. Notation as 
b FT. 3. X&&en Ibe, tie& chromafogram f@J. 
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~dication of a re&lution of both peaks. !Jn this comection we should mention the 
interesting finding that our method bast?d on eqns. 20a and 21a works very well with 

Av cd c = 1, satisfactorily with dv,,,. = 1.3 and unsatisfactorily with dv,,*. = 
Av = 0.5, whereas the computer program used by Is&e et al. yields good results only 

in the last instance. With A veal c = 1 it iterated very slowly, did not manage to satisfy 
the prescribed tolerance (O-01) ahd the tial corrected curve closely resembled that 
obtained by the method of Pierce and Armonas.] 

Cpmputer programs for all of the methods were written in Basic and imple- 
mented on a Wang 2200 desk-top programmable calculator with 12 kB storage cap- 
acity. Net computation times for the correction of chromatogram A in Fig. 3 were: 
2& min. with eqn. 21a, 1 min for the method of Pierce and Armonas, and 83 min for 
the method of Ishige et al. 

A corresponding comparison of our method (eqn. 21a) with the procedures of 
Ishige et al. aud Pierce and Armonas for the artificial chromatogram B is shown in 
Fig. 4. In this iristauce of a unimodal, very narrow molecular weight distribution 

(MJM~ = 1.1) all of the methods gave very good results and the calculated curves 
fitted the original function ,v(v). 

Finally, in Figs. 4 and 5 the proposed correction procedure (eqn. 21a, Av,~, = 
1.5) is compared with the methods of Ishige et al. and Fierce and Armonas on real 
chromatograms obtained with polystyrene and poly(methy1 methacrylate); a spread- 
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Fig. 5. Comparison of different methods of_corrcction applied to a real chromatogram of polystyrene. 
1 = Norma&cd uncorrected chromatogram; 2 = Ishige et af.8; 0, thii work, eqn. 2la, k = 5, 
dvcaIs = 1.5; ($1 Pierce and ArmonaQ”. 
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Fig. 6. Corresponding comparison to that in Fig. 5 for a reai chromatogram of poly(methy1 meth- 
acryIate). Notation as in Fig. 5. 

ing factor, h(v), given by eqn. 23 was used throughout. The chromatogram of the 
polystyrene sample in Fig. 5 indicates the presence of two strongly superimposed 
peaks; all three correction methods were abIe to resolve them. Eqn. 21 and the 
method of Ishige et al. gave again very similar corrected chromatograms; the resolu- 
tion of the method of Pierce and Armonas was much worse. A very similar situation 
arises in the correction of a chromatogram of poly(methyI methacrylate) shown in 
Fig. 6; although in this instance the separation of both peaks is somewhat greater; as 
a rest&, even the method of Pierce and Armonas gives a satisfactory result. The net 
computation times with the Wang 2200 calculator were as follows: (a) for the chro- 
matogram in Fig. 5, CCL 12 min (Pierce and Armonas), ca. 29 min (eqn. 21a) and 72 
min (lshige ei al.); (b) for the chromatogram in Fig. 6, CLI. 2 min (Pierce and Armonas), 

TABLE I 

MOLECULAR WEIGHT AVERAGES CALCULATED BY DIFFERENT CORRECTION 
METHODS FROM CHROMATOGRAMS OF POLYSTYRENE AND POLY(METHYL METH- 
ACRYLATE) 

Method - Sumpte I 

Uncorrected Polystyrene ’ 7.615 14.969 25.115 
Fierce and ArmonaszO 7.862 12s94 17.610 
Eqn. 2Ia, d~,.,~ = 1.5, k = 5 8.164 13.933 19.850 
khige ef al.’ 8.236 13.867 19.249 

UtlcOrlXXkd PoIy(methyL methacrylate)* 3.536 12.148 3O.alo 
Pierce and Armonasto 3.813 10.802 22.872 
Eqn. 21a, &,I, = 1.5, k = 5 3.742 10.826 21.814 
Ishige et aLa 3.790 11.263 23.565 

* Calculated from a calibration graph for polystyrene assuming the vaIidity of the universal 
calibration according to Grubisic et aL*5_ 
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CII. 3 min (eqn. 21a) and 32 min (Ishige et al.). Corrected values of number-, weight- 
and z-averages obtained by the three methods for both real samples are given in 
Table I. 

From the point of view of correction efficiency, eqn. 21a is to be preferred to 
the simpler eqn. 20a. It is recommended that one should work with Av,,~~ = 1; or 
Av carc = 1.5, with a number of iteration steps not greater than k = 5. In all of the 
exampIes studied, the proposed method of zone spreading correction based on eqn. 
21a proved to be equally efficient but much simpler and faster than the method of 
Ishige et al. It is particularly suitable for laboratories with only a small computer 
with restricted storage capacity; with lower demands on accuracy, eqn. 21a can be 
used in a single step and the calculation can then be carried out with a simple desk-top 
calculator. The proposed procedure is limited to the case of a Gaussian kernel in the 
Tung integral equation, but it is, however, capable of accommodating a variable 
spreading factor, h(v). The method does not require a fine sub-division of the abscissa 
in reading the chromatogram heights, which speeds up considerably the processing 
of a large number of experimental results. 
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